144 research outputs found

    Continuous loading of a magnetic trap

    Get PDF
    We have realized a scheme for continuous loading of a magnetic trap (MT). ^{52}Cr atoms are continuously captured and cooled in a magneto-optical trap (MOT). Optical pumping to a metastable state decouples atoms from the cooling light. Due to their high magnetic moment (6 Bohr magnetons), low-field seeking metastable atoms are trapped in the magnetic quadrupole field provided by the MOT. Limited by inelastic collisions between atoms in the MOT and in the MT, we load 10^8 metastable atoms at a rate of 10^8 atoms/s below 100 microkelvin into the MT. After loading we can perform optical repumping to realize a MT of ground state chromium atoms.Comment: 4 pages, 4 figures, version 2, modified references, included additional detailed information, minor changes in figure 3 and in tex

    Electromagnetic vertex function of the pion at T > 0

    Full text link
    The matrix element of the electromagnetic current between pion states is calculated in quenched lattice QCD at a temperature of T=0.93TcT = 0.93 T_c. The nonperturbatively improved Sheikholeslami-Wohlert action is used together with the corresponding O(a){\cal O}(a) improved vector current. The electromagnetic vertex function is extracted for pion masses down to 360MeV360 {\rm MeV} and momentum transfers Q22.7GeV2Q^2 \le 2.7 {\rm GeV}^2.Comment: 17 pages, 8 figure

    In medium T-matrix for superfluid nuclear matter

    Get PDF
    We study a generalized ladder resummation in the superfluid phase of the nuclear matter. The approach is based on a conserving generalization of the usual T-matrix approximation including also anomalous self-energies and propagators. The approximation here discussed is a generalization of the usual mean-field BCS approach and of the in medium T-matrix approximation in the normal phase. The numerical results in this work are obtained in the quasi-particle approximation. Properties of the resulting self-energy, superfluid gap and spectral functions are studied.Comment: 38 pages, 19 figures, Introduction rewritten, Refs. adde

    Low frequency view of GRB 190114C reveals time varying shock micro-physics

    Get PDF
    We present radio and optical afterglow observations of the TeV-bright long gamma-ray burst 190114C at a redshift of z = 0.425, which was detected by the Major Atmospheric Gamma Imaging Cherenkov telescope. Our observations with Atacama Large Millimeter/submillitmeter Array, Australia Telescope Compact Array, and upgraded Giant Metre-wave Radio Telescope were obtained by our low frequency observing campaign and range from ∼1 to ∼140 d after the burst and the optical observations were done with three optical telescopes spanning up to ∼25 d after the burst. Long-term radio/mm observations reveal the complex nature of the afterglow, which does not follow the spectral and temporal closure relations expected from the standard afterglow model. We find that the microphysical parameters of the external forward shock, representing the share of shock-created energy in the non-thermal electron population and magnetic field, are evolving with time. The inferred kinetic energy in the blast-wave depends strongly on the assumed ambient medium density profile, with a constant density medium demanding almost an order of magnitude higher energy than in the prompt emission, while a stellar wind-driven medium requires approximately the same amount energy as in prompt emission

    Identification of common genetic risk variants for autism spectrum disorder

    Get PDF
    Autism spectrum disorder (ASD) is a highly heritable and heterogeneous group of neurodevelopmental phenotypes diagnosed in more than 1% of children. Common genetic variants contribute substantially to ASD susceptibility, but to date no individual variants have been robustly associated with ASD. With a marked sample-size increase from a unique Danish population resource, we report a genome-wide association meta-analysis of 18,381 individuals with ASD and 27,969 controls that identified five genome-wide-significant loci. Leveraging GWAS results from three phenotypes with significantly overlapping genetic architectures (schizophrenia, major depression, and educational attainment), we identified seven additional loci shared with other traits at equally strict significance levels. Dissecting the polygenic architecture, we found both quantitative and qualitative polygenic heterogeneity across ASD subtypes. These results highlight biological insights, particularly relating to neuronal function and corticogenesis, and establish that GWAS performed at scale will be much more productive in the near term in ASD.Peer reviewe

    Observation of inverse Compton emission from a long γ-ray burst.

    Get PDF
    Long-duration γ-ray bursts (GRBs) originate from ultra-relativistic jets launched from the collapsing cores of dying massive stars. They are characterized by an initial phase of bright and highly variable radiation in the kiloelectronvolt-to-megaelectronvolt band, which is probably produced within the jet and lasts from milliseconds to minutes, known as the prompt emission1,2. Subsequently, the interaction of the jet with the surrounding medium generates shock waves that are responsible for the afterglow emission, which lasts from days to months and occurs over a broad energy range from the radio to the gigaelectronvolt bands1-6. The afterglow emission is generally well explained as synchrotron radiation emitted by electrons accelerated by the external shock7-9. Recently, intense long-lasting emission between 0.2 and 1 teraelectronvolts was observed from GRB 190114C10,11. Here we report multi-frequency observations of GRB 190114C, and study the evolution in time of the GRB emission across 17 orders of magnitude in energy, from 5 × 10-6 to 1012 electronvolts. We find that the broadband spectral energy distribution is double-peaked, with the teraelectronvolt emission constituting a distinct spectral component with power comparable to the synchrotron component. This component is associated with the afterglow and is satisfactorily explained by inverse Compton up-scattering of synchrotron photons by high-energy electrons. We find that the conditions required to account for the observed teraelectronvolt component are typical for GRBs, supporting the possibility that inverse Compton emission is commonly produced in GRBs
    corecore